1. Is I_2 greater than, less than, or equal to I_1 ? Explain. 2. All wires in this figure are made of the same material and have the same diameter. Rank in order, from largest to smallest, the currents I_1 to I_4 . Order: Explanation: 3. Metal 1 and metal 2 are each formed into 1-mm-diameter wires. The electric field needed to cause a 1 A current in metal 1 is larger than the electric field needed to cause a 1 A current in metal 2. Which metal has the larger conductivity? Explain. 4. If a metal is heated, does its conductivity increase, decrease, or stay the same? Explain. 5. Wire 1 and wire 2 are made from the same metal. Wire 2 has a larger diameter than wire 1. The electric field strengths E_1 and E_2 in the wires are equal. a. Compare the values of the two current densities. Is J_1 greater than, less than, or equal to J_2 ? Explain. b. Compare the values of the currents I_1 and I_2 . c. Compare the values of the electron drift speeds $(v_d)_1$ and $(v_d)_2$. 6. A wire consists of two equal-diameter segments. Their conductivities differ, with $\sigma_2 > \sigma_1$. The current in segment 1 is I_1 . - a. Compare the values of the currents in the two segments. Is I_2 greater than, less than, or equal to I_1 ? Explain. - b. Compare the strengths of the current densities J_1 and J_2 . - c. Compare the strengths of the electric fields E_1 and E_2 in the two segments. 7. The wires below are all made of the same material. Rank in order, from largest to smallest, the resistances R_1 to R_5 of these wires. Order: Explanation: 8. The two circuits use identical batteries and wires of equal diameters. Rank in order, from largest to smallest, the currents I_1 to I_7 at points 1 to 7. Order: Explanation: 9. For resistors R_1 to R_2 : a. Which end (left, right, top, or bottom) is more positive? R_1 : ______ R_2 : _____ b. In which direction (such as left to right or top to bottom) does the potential decrease? *R*₁: _____ R₂: 10. Wire 1 and wire 2 are made from the same metal. Wire 1 has twice the diameter and half the electric field of wire 2. What is the ratio I_1/I_2 ?